
How Do You Solve a Problem Like
Santa Claus ?

Prototyping Join Patterns with
stackless.py for Stackless Python

Andrew Francis
af.stackless@gmail.com

Montreal Python 26
December 17th, 2011

Trial-and-error

Play

Serendipity

Fearless Programming

Learning

Baling wire and Chewing Gum Innovation

Friendship

Exploring

Challenges

Feedback

Syncretism

The Santa Claus Problem

Santa repeatedly sleeps until wakened by either all of his nine rein-
deer, back from their holidays, or by a group of three of his ten
elves. If awakened by the reindeer, he harnesses each of them to his
sleigh, delivers toys with them and finally unharnesses them
(allowing them to go off on holiday). If awakened by a group of
elves, he shows each of the group into his study, consults with them
on toy R&D and finally shows them each out (allowing them to go
back to work).

Santa should give priority to the reindeer in the case that there is
both a group of elves and a group of reindeer waiting.

Perception

Taken from The Santa Claus Problem: Thread Synchronization

Reality

http://www.youtube.com/watch?v=pqO6tKN2lc4

Solutions Through The Years

Year Language Mechanism

1994 C Semaphores

1997 Ada 95 Protected objects,
Rendezvous (select)

2003 Polyphonic C# Join Patterns

2007 Haskell Software
Transactional
Memory

Join Patterns a la Polyphonic C#

class Join2 {

 void wait(out int i, out int j)

 & async first(int r1)

 & async second(int r2) {

 i = r1; j = r2; return;

 }

}

//client code

int i,j;

Join2 x = new Join2();

...

//synchronous method will block

x.wait(i,j);

// do something with i and j

Chord Rules

• When pending method calls match a pattern, its
body runs.

• If there is no match, the invocations are queued
up.

• If there are several matches, an unspecified
pattern is selected.

• If receiver is synchronous, body executes in
receiver’s thread.

• If only asynchronous methods, the body runs in a
new thread.

Stackless Python

• Superset of CPython.

– Inspired by Bell Labs Limbo language

• Reputation for user space threads too cheap
to meter.

• Cooperative and pre-emptive multi-tasking.

Example

import stackless

def producer(aChannel):

 aChannel.send("hello")

def consumer(aChannel):

 print aChannel.receive()

aChannel = stackless.channel()

stackless.tasklet(producer)(aChannel)

stackless.tasklet(consumer)(aChannel)

stackless.schedule()

Synchronous Channels

Before: [producer, …+scheduler
 (producer, send,“hello”) -> [] receive

After : [producer]scheduler
 * (producer, send, “hello”)]send

Before: (consumer, receive, null) -> [(Producer)]send

After: (1) consumer.val = “hello”
 (2) [(producer, send, “hello”),…]send

 (3) *…, Producer+scheduler

The Select Algorithm

Question: Why is knowing about
select() important?

Question

Answers

• Stackless Python did not originally implement
select().
– This is proof-of-concept that we can modify

stackless.py to create new features

• Select() is used under the hood to implement
join patterns

• We are going to extend the select algorithm
developed in “Prototyping Go’s Select with
stackless.py” to include join patterns.

Christian Tismer’s Sleight of Hand

• Stackless Python does not support select()

• Eliminated a queue

• Created a channel property: balance

– > 0 : senders on the queue

– < 0 : receivers on the queue

– 0: empty

stackless.py

• A PyPy module that implements the Stackless
Python API

• Written in Python!

• Low level concurrency provided by different
packages

– greenlets

– Continulets

Strategy

• Implemented sub-set of join pattern’s
behaviour

– Synchronous receiver

– No built-in asynchrony

• object.method = channel.receive()

– i.e., join2.wait() equivalent to join2.receive()

– Simplifies API

Strategy

• Why implement a method body (and class) for
synchronization patterns?
– we already have channels.

– Message bodies seem to exist to store internal
messages and compute a return value ?

• Rather
– return all internally queued values associated with

pattern.

– let receiver decide what to do.

Another Sleight of Hand

ready()

add()

remove()

action()

- A join pattern is a composite channel operation
- A join pattern uses the same interface as a channel

operation
- Now we can express disjunctions of conjunctions!

JoinPattern

chanop chanop chanop

Famous Last Words
(Le Mot de Cambronne)

“All or Nothing” (“Atomicity”)

(Dancer), (Dasher),(Vixen),(Comet),(Cupid),(Doner),(Blitzen),(Rudolph)

(Dancer), (Dasher),(Vixen),(Comet),(Cupid),(Doner),(Blitzen),(Rudolph)

(“stackless scheduler”)

application

Transfer all the data if and only if all nine reindeer
channels are ready

Reindeer Join Pattern

New Rules

Postpone Rendezvous (lazy acquire)

Before: (rudolph, S, msg) -> [(Santa,JR)] rudolph-receive
After : [(rudolph,join-send, msg)]rudolph-send

Steal

Before: (Mrs Claus, R, Null) -> [(rudolph,JS,msg)send

After : Mrs Claus.val = msg
 [(Santa,JR)] rudolph-receive

Hence plan to throw one away; you
will, anyhow.

--Fred Brooks (on pilot projects)

Words of Wisdom

Lessons Learnt

• Asynchrony matters
– Prototype not powerful enough to handle Dining

Philosophers

– Synchronous channels with buffers.

• Atomicity a powerful feature.
– In case of Dining Philosophers, just does the right

thing

• “Transactional” logic and expressiveness
come to the forefront quickly.

Status

• Prototype is still held together by baling wire
and chewing gum.

• A lot of work needs to be done before it is
prime time

A New Language: Conversation with
Scalable Join Pattern’s Authors

Transactional events

Composibility

Eager and lazy acquire

Lock-free data structures

Optimistic locking protocols

Atomic transactions
Concurrent ML

Inevitability

The Ghosts of Software Present, Past,
and Future

The Present: Concurrent ML:
guard(event, f)

The Past: Chandler Notification Manager 2.0 (R.I.P):
eval(“city == MTL and band == Interpol”)

The Future: C.E.P & S.0.A with Stackless Python:

Guard(function(chanop.val), concertFeedChannel)
return eval(“city=MTL and band==Hannah Georgas”)

References

• The Santa Claus Problem: Thread Synchronization,
http://www.youtube.com/watch?v=pqO6tKN2lc4

• Scalable Join Patterns, Claudo Russo & Aaron Turon,
http://www.ccs.neu.edu/home/turon/scalable-joins.pdf

• Jingle Bells, Solving the Santa Claus Problem in Polyphonic #C,
http://research.microsoft.com/en-us/um/people/nick/polyphony/

• The Polyphonic #C Bedroom Poster, http://research.microsoft.com/en-
us/um/people/nick/polyphony/polyphoniccsharpposter2002.ppt

• http://swtch.com/usr/local/plan9/src/libthread/channel.c, Russ Cox

• Concurrent Programming in ML.
John H. Reppy. Cambridge University Press, Cambridge, England, 1999.

• The Notification Manager, http://www.osafoundation.org/archives/2003_11.html

• stackless.py (with select),
http://stacklessexamples.googlecode.com/svn/trunk/sandbox/select/stackless.py

• Prototyping Go’s Select with stackless.py for Stackless Python,
http://andrewfr.files.wordpress.com/2010/07/july31revised.pdf

http://www.youtube.com/watch?v=pqO6tKN2lc4
http://www.youtube.com/watch?v=pqO6tKN2lc4
http://www.youtube.com/watch?v=pqO6tKN2lc4
http://www.ccs.neu.edu/home/turon/scalable-joins.pdf
http://www.ccs.neu.edu/home/turon/scalable-joins.pdf
http://www.ccs.neu.edu/home/turon/scalable-joins.pdf
http://www.ccs.neu.edu/home/turon/scalable-joins.pdf
http://research.microsoft.com/en-us/um/people/nick/polyphony/
http://research.microsoft.com/en-us/um/people/nick/polyphony/
http://research.microsoft.com/en-us/um/people/nick/polyphony/
http://research.microsoft.com/en-us/um/people/nick/polyphony/
http://research.microsoft.com/en-us/um/people/nick/polyphony/polyphoniccsharpposter2002.ppt
http://research.microsoft.com/en-us/um/people/nick/polyphony/polyphoniccsharpposter2002.ppt
http://research.microsoft.com/en-us/um/people/nick/polyphony/polyphoniccsharpposter2002.ppt
http://research.microsoft.com/en-us/um/people/nick/polyphony/polyphoniccsharpposter2002.ppt
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://www.osafoundation.org/archives/2003_11.html
http://www.osafoundation.org/archives/2003_11.html
http://stacklessexamples.googlecode.com/svn/trunk/sandbox/select/stackless.py
http://stacklessexamples.googlecode.com/svn/trunk/sandbox/select/stackless.py
http://andrewfr.files.wordpress.com/2010/07/july31revised.pdf
http://andrewfr.files.wordpress.com/2010/07/july31revised.pdf

For More information

http://andrewfr.wordpress.com

Joyeux Noël

