Prototyping Go’s Select with
Stackless.py for Stackless Python

Andrew Francis
af.stackless@gmail.com
http://andrewfr.wordpress.com
July 19th, 2010
EuroPython 2010
Birmingham, UK

mailto:af.stackless@gmail.com
mailto:af.stackless@gmail.com

Purpose

* To show how PyPYy’s stackless.py module
can be used to prototype new concurrency
features for Stackless Python

— Stackless Python is a superset of Python
renowned for microthreads too cheap to meter.

— Stackless Python also great for writing new
concurrency constructs!

Why Prototype with
stackless.py?

* Occasionally there are concurrency
constructs that are difficult to correctly
implement solely with Stackless Python’s
classes
— need finer control over scheduling

— Need to supplant underlying C data structures

* Prototyping with Stackless Python’s C code
base a costly way to experiment

Why Go’s Select : A Family
Tree

“Processes” (coroutines),
channels,

alt (select)
Tasklets Goroutines
channels channels
(but no select!) select

By The Way

Select allows a coroutine to
wait on multiple channels for
an action to occur without
resorting to polling

(conceptually similar but not
the same as UNIX select)

Questions Explored through
Prototyping

 What is a suitable interface for a Stackless
Python select?

* What would internally change?

* How would pre-existing Stackless Python
applications break?

The Cast of Characters

PYTHON

GREENLETS

STACKLESS PYTHON

USES

USES
STACKLESS.Py

Implementation Details

{getruncou nt ()J
| Runnable List

{ getcurrent() J

{ Schedule() J

Scheduler

Linked List (Stackless Python)

o ==,

Deque (stackless.py)

Y

B Current tasklet

The Approach

 Read Rob Pike’s paper “The
Implementation of Newsqueak”™

—includes great description of the channel based
message passing algorithm

— An important theme is the opacity of the
underlying system’s state to the application

— First prototype was based solely on Pike’s
description

Approach Continued: Quick

chanelobject.c stackless.py

Int def send(self, msg)
PyChannel_Send()

v
static pyObject

*generic_channel_action() def channel_action
(self, arg, dir)

Mimics Stackless Python’s logical structure. Other variants of
stackless.py don't

Approach Continued
Ask Questions

* Asked questions in Go Lang Nuts and
Stackless mailing lists

— GolLang Nuts: Rob Pike, Russ Cox, lan
Taylor

 Read libthread.c
— Stackless: Christian Tismer and Richard
Tew

* Select cannot be done in Stackless without
additional tasklets

Prototyping

 Late April to June Sunday sessions
— partner Kevin BuluSek (Thanks!)

* Two prototypes done by end of April
— implementation of an eventHandler
« Got familiar with issues and stackless.py

— Stackless Python mock-up based on Plan 9's
libthread (Kevin)

 An API for select
e data structures

An Overview of Stackless
Python and Go

Introduction

andrew@parker:~/lab/stacklessSelect/comparisons$ python

Python 2.6.5 Stackless 3.1b3 060516 (python-2.65:82030M, Jun 26
2010, 15:49:57)

[GCC 4.3.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import stackless

[32376 refs]

>>> dir(stackless)

[doc_''' name_'' reduce ' ' reduce ex ' ' gc track',
' gc_untrack',' get all objects',' get refinfo', ' pickle _moduledict’,

' wrap', 'bomb', 'cframe’, 'Channel', 'cstack’, 'enable_softswitch’,
'get_thread_info', 'getcurrent’, 'getmain’, 'getruncount’, 'run’,
'schedule’, 'schedule _remove’, 'select’, 'set_channel callback’,

'set schedule callback’, 'slpmodule’, 'stackless’, 'tasklet’,
'test_cframe’, 'test_cframe_nr', 'test_cstate’, 'test_outside']
', 'set_ignore_nesting', 'setup’, 'tempval’, '‘thread id']

Stackless Python Elements

e Tasklets
— User space light weight threads
— Executes actual work

 Scheduler

— Performances context switching between
tasklets

— Uses a round-robin scheduling
— Two modes: pre-emptive and cooperative

Channels

 Used for communications and
synchronization

 Bi-directional
» Can support iteration

* An object including channels and
exceptions can be passed

 Can be subclassed

Stackless Python’s World

Tasklets

I receive ()

Scheduler
getruncount()
schedule ()
run ()
11
i
!
i
i
Threads ,' 1

send ()

emove ()

ill ()

Channel

Green — available to programmer

Simple Stackless Programme

import stackless

def reader (channel) :
print "entering reader"
print channel.receive ()
print "exiting reader"

writer (channel) :
print "entering writer"
channel.send ("hello world")
print "exiting writer"
if name == " main ":
ch = stackless.channel ()
stackless.tasklet (reader) (ch)
stackless.tasklet (writer) (ch)
stackless.run ()

Output

entering reader
entering writer
hello world
exiting reader
exiting writer

A Bad Channel Equivalent

import stackless

tempVal = None

class namedTasklet(stackless.tasklet):

name = None

def _ repr__ (self):
return self.name

def reader():
global tempVal
print "entering reader”
stackless.schedule()
print tempVal
print "exiting reader”

def printQueue():

h = stackless.getcurrent()
p=h
while True:

print "->", p

p = p.next

if p==h:

break

def writer():
global tempVal
print "entering writer"
tempVal = "hello world"
t.remove()
stackless.schedule()
print "exiting writer"

def publisher(t):
print "entering publisher"
printQueue()
t.insert()
print
printQueue()
stackless.schedule()
print "exiting publisher"
if name_==" main__ "
t = namedTasklet(reader)()
t.name = "reader”
x = namedTasklet(writer)()
X.name = "writer"
x = namedTasklet(publisher)(t)
x.name = "publisher"
stackless.run()

Output

entering reader
entering writer
entering publisher
-> publisher

-> writer

-> publisher

-> writer

-> reader

exi1ting writer
hello world
ex1ting reader
ex1ting publisher

Why is Bad Important?

 Demonstrates that channels can be
constructed from lower level methods
available to the programmer
— schedule()
— schedule _remove()

* Application programmer has complete
control over the scheduler

* Almost all the building blocks are there to
build select using the Stackless API!

Channels: Rendezvous
Semantics

 For a successful communication to occur
there must be a sending tasklet and a
receiving tasklet

— active tasklet is the source

— Inactive tasklet the target

* |f there is not a target, the active tasklet will
block until another tasklet performs a
complimentary operation

How Channels Work

e’(-' channel A A channel A channel A channelA
taskl tasklet, tasklet,

0
| vawe ST [lemp=thello” |4 value = hello” |
taskleti
! channel A
tasklet,

tasklet,

_ [temp=“hel|o”]

j _ Current tasklet

lvalue =“heIIo”| [] runnable
B o

1

channel A

tasklet

Channel Implementation Details:

>>> dir(stackless.channel)

[[class ',' delattr "' doc ' ' format ' ' getattribute ',

' hash__ "' init "' iter ', module ',' new_
' reduce ex_ ',' repr_'' setattr ' ' setstate ' ' sizeof °,
' slots "' str "' subclasshook ‘, 'balance', 'close’, 'closed’,
'closing’, 'next’, 'open’, 'preference’, 'queue', 'receive’, 'schedule_all',
'send’, 'send_exception', 'send_sequence]

__reduce_ ',

-Channel.balance determines whether a tasklet will block
-A balance of zero causes the tasklet to block

- blocked tasklets are placed on a FIFO queue

-send() increments balance by 1

-receive() decrements balance by 1

A limitation of the rendezvous
semantics model

def eventHandler (channels):
while True:
for ch in channels:
message = ch.receive()
stackless.tasklet
(doSomething) (message)

Ch[0] ready after T + 10
Ch[1] ready after T + 15
Ch[2] ready after T + 1
Ch[3] ready after T + 2

Clearly this is a throughput problem....

Enter Go

* Very different from Python
— Statically typed
— Compiled
— limited OO features
* Similar concurrency constructs

— Implemented as language features
— Support for multiple CPUs

Simple Go Programme

package main
import fmt "fmt“

func reader(in chan int) {
fmt.Printf("entering reader\n");
X :=<-in;
fmt.Printf("->%d \n", x);
fmt.Printf("exiting reader\n");
in <-1

func writer(out chan int) {
fmt.Printf("entering writer\n");
out <-1;
fmt.Printf("exiting writer\n");

}

func main() {
var ch = make(chan int);
fmt.Printf("l got here \n");
go reader(ch);
go writer(ch);
fmt.Printf("Main Ending \n");
<-ch;

Go Constructs

=

variable <- channel variable = channel.receive()

Channel <- variable channel.send(variable)

data, ok = ch <- variable if channel.balance '= 0

Go’s World

Scheduler

Channels

receive <-

<- send

Green — accessible to the programmer Threads

Red — not accessible to the programmer

goroutine

So?

» ‘Bad’ example could not be implemented in
Go
— goroutines are not objects

— Scheduler almost totally opaque to the
programmer

 Under the hood

— Support for multiple CPUs requires extensive
locking

— Is fine grained control over the scheduler in
such an environment desirable?

The Select Statement

select {
case a := <- ch[0]:

go doSomething(a);
case b := <= ch[1l]

go doSomething (b);
case ¢ := <- chl[2]

go doSomething(c);
case d := <- ch[3]:

go doSomething(d);

}

Could We Implement Select with
Only Stackless Python?

* Yes
— Use an additional tasklet per case
* And an extra join channel

— Hard to mimic behaviour

* Problem dealing with tasklets that unblock after the
select has finished

* The 20% that requires 80% of the effort?
— Bad performance?

Fragment of a Pseudo Solution

def select(cases):
selector = stackless.channel()

def case(ch,operation, value):
if operation == RECEIVE:
value = ch.receive()
else:
ch.send(value)

selector.send(ch, operation, value)

for ch, op, value in cases:
if op == RECEIVE:
stackless.tasklet(reader)(ch, value)
else:
stackless.tasklet(writer)(ch, value)

block until a case is ready
retChannel, retOperation, retVal = selector.receive()

stackless.py

Section four

Description

* A Python based implementation of the
Stackless Python module

— scheduler, channels, tasklets
— Single file, roughly 650 lines

» Part of the PyPy Framework
— Currently PyPy implements Python 2.5

— Although Stackless is implemented, it is not
iIntegrated with the JIT.

andrew@parker:~$ pypy-c

Python 2.5.2 (75825, Jul 05 2010, 02:48:27)

[PyPy 1.3.0] on linux2

Type "help", "copyright”, "credits" or "license" for more information.
And now for something completely different: “"it's not a hack, it's a
workaround"

>>>> import stackless

>>>> dir(stackless)

[DEBUG', 'TaskletExit',' all ' ' builtins "' doc "' file

' name__',' nrand_next',' channel callback',,' global task id'," init'

' last_task',' main_coroutine', ' main_tasklet',' run_calls',
_schedule_callback', ' scheduler _append',' scheduler_contains',

_scheduler_remove', ' scheduler_switch',' squeue’,

_stackless_primitive_registry', 'bomb', ‘channel’, 'coroutine', 'debug’, 'deque’,
'dprint’, 'getcurrent’, 'getmain’, 'getruncount’, 'greenlet’, 'nrand’,
'operator’, 'register_stackless_primitive', 'rewrite_stackless_primitive', run’,
'schedule’, 'schedule_remove', 'set_channel callback’,

'set schedule callback’, 'sys', 'tasklet’, ‘traceback’]
>>>>

stackless.py’s Abstraction
Layer

STACKLESS.PY

STACKLESS PYPY coroutines

PYTHON Stackless transform GREENLETS

Example of Abstraction Layer
in code

try:
from _stackless import coroutine, greenlet
except ImportError: # we are running from CPython
from greenlet import greenlet
try:
from functools import partial
except ImportError: # we are not running python 2.5

Usage

» Stackless.py resides in pypy/lib

* PyPy interpreter on top of Standard Python
— Too slow
— Defeats purpose of rapid prototyping

* PYypy-C
— Like Stackless Python requires a separate
binary

— Avoid lengthy build by getting precompiled
version

A Trick of the Trade

» Use the Greenlets package with standard
Python
— Low level microthreading package

— Many Python packages use greenlets
* Eventlets
» gEvent

— stackless.py already included!

* This is the approach the PyPy team used
to develop stackless.py module

Limitations

Does not support threads
Does not support pre-emptive mode

Does not implement all of the class
attributes

The Select Algorithm

Section Five

def select(self, operations):
choice = None
source = getcurrent()
numberReady = 0

for operation in operations:
if operation.ready():
numberReady += 1
if nrand(numberReady) == 0:
choice = operation

if choice:
choice.action()
else:
for operation in operations:
operation.add()

schedule remove()
schedule()

choice = self. operation
self. operation = None

return choice.result()

Select Under the Hood

Structure of a Channel

~OLT O fQ /O

RECQ

ECEIVER
<*HELLO"> e

Runnable Queue

BLOCKING
 smers smeors SEECTwoRs
SELECT CH, SENDQ, CH, SENDQ, CH, RECQ

Select Under the Hood

Tear Down

7

CH, RECEIVERQ l

CH, RECEIVERQ
SELECT
<*HELLO">

{SELECT,”” J [SELECT,””J

/I

- the source coroutine

*Transfers data to target (with select)

*Takes select coroutine off the participating channel
queues

*Places target on the runnable list

def channel action()

def channel action(self, operation):

if channel callback is not None:
_channel callback(self, getcurrent(), operation)

target = self.queue

operation.copyOperation(target)
target.tasklet. operation = target

#clear operation from remaining channels
target.removeall ()

target.tasklet.blocked =

Source channel responsible for moving data and tearing down
channels

Implementing select with
stackless.py

Section Five

New Stackless Methods

» stackless.select(list of chanops)
— returns (channel, operation, value)

» channel.sendCase()
—returns _chanop

* channel.receiveCase()
—returns _chanop

New Class: chanop

_chanop(RECEIVE)

////v
select {

case a :="<- ch[0]:

go doSomething(a);
case b := <= ch[1l] _changp(SEND, value)

go doSomething (b) ;
case ¢ := <- ch[2]

go doSomething (c)”
case ch[3]<- d:

go doSomethingElse() ;

J

Example

def selector(a,b,c):
while flag:
ch, operation, value = stackless.select(\
[a.sendCase("A"), b.receiveCase(), c.sendCase("C")])

if ch == a:
print "sender A completed"
elif ch ==
print "received ", value, "from receiver B"
elif ch ==
print "sender C completed”
flag = False
else:
print "should not get here”

Changes to Channels

BEFORE

Channel

AFTER

New Channel Methods

» channel.addOperation(chanop)

— need way to add operations to channels
without blocking

Changes to Tasklets

-

List of CHANOPS \

! ! __operation___ /

.—{.

Channel A

Channel B

Short Cuts

* For now, separate send and receive
gueues are not implemented.

 channel.balance remains
— its so handy...
 Limitation

— A receive chanop and send chanop cannot be
on the same channel queue

What Breaks?

* Only applications that depends on internal
state

— A channel queue now consists of chanops not
tasklets

— What does ___channel now mean?
— channel.balance could disappear.

Moving to Stackless Python

Chapter Five

The Stackless Python C Version

Programmer now responsible for

— Setting up house keeping structures
(especially for C Extensions)

— Memory allocation
— Reference counting
— Manipulating complex data structures

Stackless Python C code much more
verbose

—~1000 lines versus ~150

Example: Channel action

PyAltObject *
slp_alt_action(PyAltObject *self)

{
PyThreadState *ts = PyThreadState_GET();

PyTaskletObject *t = ts->st.current;
PyAltObject *target;

assert(PyAlt_Check(self));
assert(self->tasklet == t);

target = slp_channel_remove(self->channel);
if (target == NULL)
return NULL;

Channel action Continued

assert(PyAlt_Check(target));
assert(target->tasklet != t);

Py INCREF(target);

alt_copy(self, target);
alt_remove_all(target);

target->tasklet->flags.blocked = 0;

return target;

Summary of C Code

* Most of the changes are isolated in:
— channel’s generic_channel action
— The alt object

» Stackless Python C code is justa C
equivalent of the stackless.py code

» Esoteric issues concerning stack frames
and locks are avoided

— The GIL is our friend

Conclusions

Lessons Learnt

» Select relative easy to implement but
requires substantial changes

» Clean room descriptions good
» Concentrate on proper API
* |nitially copy to learn.

» Get working prototypes up and running
quickly

Status

* Not quite prime time

— Slight signature differences between C and
stackless.py

— C version fails a few unit tests
* Mostly pertaining to pickling

— Problems with complex select tests
» Both C and stackless.py

— Performance problem with stackless.py
* A bug with channel preferences?

However this was meant to be a prototype not
production code!

Whither C Stackless Python?

* Psyco JIT/Stackless Python integration will
make

— Stackless binaries a thing of the past
— Minimize the need for writing C-extensions

* PyPy-C
— with JIT, faster than Cpython

— What will happen when stackless support is
integrated with the JIT?

Future Directions

* Experiment with supporting select as a
language feature

* Optimize select

— Can we avoid costly teardowns?

* Prototype other concurrency features
— Join patterns a la Polyphonic #C and Jocaml

— Is this a gateway to Complex Event
Processing?

Have Prototype Will Travel!

References

* “The Implementation of Newsqueak” by
Rob Pike

 http://www.stackless.com

 http://codespeak.net/pypy/dist/pypy/doc/
stackless.html

* The GolLang-Nuts mailing list

 http://swich.com/usr/local/plan9/src/
libthread/channel.c

« “Stuff What | Posted”, Richard Tew's Blog

http://www.stackless.com/
http://www.stackless.com/
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c

Acknowledgements

« Special thanks to
— Kevin Bulusek !

— Annette Hollman (for helping me with the
slides)

— The McGill Continuing Education Student
Building staff (MACES)

—And

For allowing me to do a dry run of this talk!

Questions?

Thank You

