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Purpose

• To show how PyPy’s stackless.py module 
can be used to prototype new concurrency 
features for Stackless Python

– Stackless Python is a superset of Python 
renowned for microthreads too cheap to meter.

– Stackless Python also great for writing new 
concurrency constructs!



Why Prototype with 
stackless.py?

• Occasionally  there are concurrency 
constructs that are difficult to correctly 
implement solely with Stackless Python’s 
classes
– need finer control over scheduling
– Need to supplant underlying C data structures

• Prototyping with Stackless Python’s C code 
base a costly way to experiment



Why Go’s Select : A Family 
Tree

PYTHON
NEWSQUEAK
LIMBO

STACKLESS
PYTHON

GO

“Processes” (coroutines),
channels,
alt (select)

Goroutines
channels
select

Tasklets 
channels
(but no select!)



By The Way

Select allows a coroutine to 
wait on multiple channels for 

an action to occur without 
resorting to polling 

(conceptually similar but not 
the same as UNIX select)



Questions Explored through 
Prototyping

• What is a suitable interface for a Stackless 
Python select?

• What would internally change?
• How would pre-existing Stackless Python 

applications break?



The Cast of Characters
PYTHON

STACKLESS PYTHON

PyPy-C

GREENLETS

USES
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Implementation Details
Scheduler

getruncount ()

getcurrent()

Schedule()

OR

Runnable List

Deque (stackless.py)

Linked List (Stackless Python)

Current tasklet



The Approach

• Read Rob Pike’s paper “The 
Implementation of Newsqueak”
– includes great description of the channel based 

message passing algorithm
–  An important theme is the opacity of the 

underlying system’s state to the application
– First prototype was based solely on Pike’s 

description



Approach Continued: Quick 

chanelobject.c stackless.py 
  Int 

PyChannel_Send()
def send(self, msg)

static pyObject 
*generic_channel_action() def channel_action

(self, arg, dir)

Mimics Stackless Python’s logical structure. Other variants of 
stackless.py don’t  



Approach Continued
Ask Questions

• Asked questions in Go Lang Nuts and 
Stackless mailing lists
– GoLang Nuts: Rob Pike, Russ Cox, Ian 

Taylor
• Read libthread.c

– Stackless: Christian Tismer and Richard 
Tew

• Select cannot be done in Stackless without 
additional tasklets



Prototyping

• Late April to June Sunday sessions
– partner Kevin Bulušek (Thanks!)

• Two prototypes done by end of April 
– implementation of an eventHandler

• Got  familiar with issues and stackless.py
– Stackless Python mock-up based on Plan 9’s 

libthread (Kevin)
• An API for select
• data structures



An Overview of Stackless 
Python and Go



Introduction
andrew@parker:~/lab/stacklessSelect/comparisons$ python
Python 2.6.5 Stackless 3.1b3 060516 (python-2.65:82030M, Jun 26 
2010, 15:49:57) 
[GCC 4.3.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import stackless
[32376 refs]
>>> dir(stackless)
['__doc__', '__name__', '__reduce__', '__reduce_ex__', '_gc_track', 
'_gc_untrack', '_get_all_objects', '_get_refinfo', '_pickle_moduledict', 

'_wrap', 'bomb', 'cframe', 'channel', 'cstack', 'enable_softswitch', 
'get_thread_info', 'getcurrent', 'getmain', 'getruncount', 'run', 
'schedule', 'schedule_remove', 'select', 'set_channel_callback', 
'set_schedule_callback', 'slpmodule', 'stackless', 'tasklet', 
'test_cframe', 'test_cframe_nr', 'test_cstate', 'test_outside']
', 'set_ignore_nesting', 'setup', 'tempval', 'thread_id']



Stackless Python Elements

• Tasklets
– User space light weight threads
– Executes actual work

• Scheduler
– Performances context switching between 

tasklets
– Uses a round-robin scheduling
– Two modes: pre-emptive and cooperative



Channels

• Used for communications and 
synchronization

• Bi-directional
• Can support iteration
• An object including channels and 

exceptions can be passed
• Can be subclassed



Stackless Python’s World
Scheduler

Tasklets

Threads

Insert ()

Remove ()

Kill ()

getruncount()

schedule ()

run ()

send ()

receive ()
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Channel
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M
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Simple Stackless Programme
import stackless

def reader(channel):
    print "entering reader"
    print channel.receive()
    print "exiting reader"

def writer(channel):
    print "entering writer"
    channel.send("hello world")
    print "exiting writer"

if __name__ == "__main__":
   ch = stackless.channel()
   stackless.tasklet(reader)(ch)
   stackless.tasklet(writer)(ch)
   stackless.run()



Output

entering reader
entering writer
hello world
exiting reader
exiting writer



A Bad Channel Equivalent



import stackless 

tempVal = None

class namedTasklet(stackless.tasklet):
     name = None

     def __repr__(self):
          return self.name
       
def reader():
    global tempVal
    print "entering reader"
    stackless.schedule()
    print tempVal
    print "exiting reader"

def printQueue():
    h = stackless.getcurrent()
    p = h
    while True:
        print "->", p
        p = p.next
        if p == h:
           break

def writer():
    global tempVal
    print "entering writer"
    tempVal = "hello world"
    t.remove()
    stackless.schedule()
    print "exiting writer"

def publisher(t):
    print "entering publisher"
    printQueue()
    t.insert()
    print
    printQueue()
    stackless.schedule()
    print "exiting publisher"

if __name__ == "__main__":
    t = namedTasklet(reader)()
    t.name = "reader"
    x = namedTasklet(writer)()
    x.name = "writer"
    x = namedTasklet(publisher)(t)
    x.name = "publisher"
    stackless.run()



Output
entering reader
entering writer
entering publisher
-> publisher
-> writer

-> publisher
-> writer
-> reader
exiting writer
hello world
exiting reader
exiting publisher



Why is Bad Important?

23

• Demonstrates that channels can be 
constructed from lower level methods 
available to the programmer
– schedule()
– schedule_remove()

• Application programmer has complete 
control over the scheduler

• Almost all the building blocks are there to 
build select using the Stackless API!



Channels: Rendezvous 
Semantics

• For a successful communication to occur 
there must be a  sending tasklet and a 
receiving tasklet
– active tasklet is the source
– inactive tasklet the target

• If there is not a target, the active tasklet will 
block until another tasklet performs a 
complimentary operation



How Channels Work

tasklet0 tasklet1
value =“” temp = “hello”

channel A channel A

tasklet0 tasklet1
temp = “hello”

channel A

tasklet0

tasklet1
temp = “hello”

channel A
tasklet0
value =“hello”

tasklet0
value = “hello”

channel A channel A

1

2

3

4

value =“hello”
Current tasklet

runnable

blocked

value = “”

value =“”



Channel Implementation Details:

>>> dir(stackless.channel)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', 
'__hash__', '__init__', '__iter__', '__module__', '__new__', '__reduce__', 
'__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', 
'__slots__', '__str__', '__subclasshook__', 'balance', 'close', 'closed', 
'closing', 'next', 'open', 'preference', 'queue', 'receive', 'schedule_all', 
'send', 'send_exception', 'send_sequence]

-Channel.balance determines whether a tasklet will block
-A balance of zero causes the tasklet to block
- blocked tasklets are placed on a FIFO queue
-send() increments balance by 1
-receive() decrements balance by 1



A limitation of the rendezvous 
semantics model

def eventHandler(channels):
    while True:
        for ch in channels:
            message = ch.receive()
            stackless.tasklet
(doSomething)(message)

Ch[0] ready after T + 10
Ch[1] ready after T + 15
Ch[2] ready after T + 1
Ch[3] ready after T + 2

Clearly this is a throughput problem….



Enter Go

• Very different from Python
– Statically typed
– Compiled
– limited OO features

• Similar concurrency constructs
– Implemented as language features
– Support for multiple CPUs



Simple Go Programme
func main() {
     var ch = make(chan int);
     fmt.Printf("I got here \n");
     go reader(ch);
     go writer(ch);
     fmt.Printf("Main Ending \n");
     <-ch;
}

package main

import fmt "fmt“

func reader(in chan int) {
     fmt.Printf("entering reader\n");
     x := <- in;
     fmt.Printf("->%d \n", x);
     fmt.Printf("exiting reader\n");
     in <- 1
}

func writer(out chan int) {
     fmt.Printf("entering writer\n");
     out <- 1;
     fmt.Printf("exiting writer\n");
}



Go Constructs
Go Stackless Python

variable <- channel variable = channel.receive()

Channel <- variable channel.send(variable)

data, ok = ch <- variable  if channel.balance != 0



Go’s World
Scheduler goroutine

Threads

<-  send

receive <-

1

Channels

M

N

N

Green – accessible to the programmer

Red – not accessible to the programmer

1



So?

• ‘Bad’ example could not be implemented in 
Go
– goroutines are not objects
– Scheduler almost totally opaque to the 

programmer
• Under the hood

– Support for multiple CPUs requires extensive 
locking

– Is fine grained control over the scheduler in 
such an environment desirable? 



The Select Statement
       select {
       case a := <- ch[0]:
            go doSomething(a); 
       case b := <- ch[1]
            go doSomething(b);
       case c := <- ch[2]
            go doSomething(c);
       case d := <- ch[3]: 
            go doSomething(d);
       }



Could We Implement Select with 
Only Stackless Python?

• Yes 
– Use an additional tasklet per case

• And an extra join channel
– Hard to mimic behaviour

• Problem dealing with tasklets that unblock after the 
select has finished

• The 20% that requires 80% of the effort?
– Bad performance?



Fragment of a Pseudo Solution
def select(cases):
     selector = stackless.channel()

     def case(ch,operation, value):
         if operation == RECEIVE:
            value = ch.receive()
        else:
            ch.send(value)

        selector.send(ch, operation, value)

     for ch, op, value in cases:
        if op == RECEIVE:
            stackless.tasklet(reader)(ch, value)
        else:
            stackless.tasklet(writer)(ch, value)
    
    # block until a case is ready 
     retChannel, retOperation, retVal = selector.receive()
    
    



stackless.py

Section four



Description

• A Python based implementation of the 
Stackless Python module
– scheduler, channels, tasklets
– Single file, roughly 650 lines

• Part of the PyPy Framework
– Currently PyPy implements Python 2.5
– Although Stackless is implemented, it is not 

integrated with the JIT.



andrew@parker:~$ pypy-c
Python 2.5.2 (75825, Jul 05 2010, 02:48:27)
[PyPy 1.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``it's not a hack, it's a
workaround''
>>>> import stackless
>>>> dir(stackless)
['DEBUG',  'TaskletExit', '__all__', '__builtins__', '__doc__', '__file__', 
'__name__', '__nrand_next', '_channel_callback', ,'_global_task_id', '_init', 
'_last_task', '_main_coroutine', '_main_tasklet', '_run_calls', 
'_schedule_callback', '_scheduler_append', '_scheduler_contains', 
'_scheduler_remove', '_scheduler_switch', '_squeue', 
'_stackless_primitive_registry', 'bomb', 'channel', 'coroutine', 'debug', 'deque', 
'dprint', 'getcurrent', 'getmain', 'getruncount', 'greenlet', 'nrand', 
'operator', 'register_stackless_primitive', 'rewrite_stackless_primitive', 'run', 
'schedule', 'schedule_remove', 'set_channel_callback', 
'set_schedule_callback', 'sys', 'tasklet', 'traceback']
>>>> 



stackless.py’s Abstraction 
Layer

STACKLESS.PY

STACKLESS
PYTHON GREENLETS

PYPY coroutines
Stackless transform



Example of Abstraction Layer
in code

try:
    from _stackless import coroutine, greenlet
except ImportError: # we are running from CPython
    from greenlet import greenlet
    try:
        from functools import partial
    except ImportError: # we are not running python 2.5



Usage

• Stackless.py resides in pypy/lib 
• PyPy interpreter on top of Standard Python

– Too slow
– Defeats purpose of rapid prototyping

• pypy-c
– Like Stackless Python requires a separate 

binary
– Avoid lengthy build by getting precompiled 

version



A Trick of the Trade

• Use the Greenlets package with standard 
Python
– Low level microthreading package 
– Many Python packages use greenlets

• Eventlets
• gEvent 

– stackless.py already included!
• This is the approach the PyPy team used 

to develop stackless.py module



Limitations

• Does not support threads
• Does not support pre-emptive mode
• Does not implement all of the class 

attributes



The Select Algorithm

Section Five



def select(self, operations):
    choice = None
    source = getcurrent()
    numberReady = 0

    for operation in operations:
        if operation.ready():
           numberReady += 1
           if nrand(numberReady) == 0:
               choice = operation
 
    if choice:
        choice.action()
    else:
        for operation in operations:
            operation.add()

        schedule_remove()
        schedule()
 
        choice = self._operation
        self._operation = None

    return choice.result() 



 Select Under the Hood

 SELECT ,””

CH0 SENDQ0 CH1 SENDQn CH2 RECQ

SELECT, “WORLD” SELECT ,””

SELECT

SENDQ

RECQ
SELECT SENDER

<“HELLO”>
RECEIVER

<“”>

Runnable Queue

BLOCKING

Structure of a  Channel

RECEIVER
<“”>



 

SELECT
<“HELLO”>

CH0 RECEIVERQ

CH2 RECEIVERQ

Tear Down

Select Under the Hood

SELECT,”” SELECT,””

• the source coroutine
•Transfers data to target (with select)
•Takes select coroutine off the participating channel 
queues
•Places target on the runnable list



def _channel_action()
def _channel_action(self, operation):        

   if _channel_callback is not None:
       _channel_callback(self, getcurrent(), operation)

       target = self.queue

       operation.copyOperation(target) 
       target.tasklet._operation = target

       #clear operation from remaining channels
       target.removeall()

       target.tasklet.blocked = 0

Source channel responsible for moving data and tearing down 
channels



Implementing select with 
stackless.py

Section Five



New Stackless Methods

• stackless.select(list of chanops)
– returns (channel, operation, value)

• channel.sendCase()
– returns _chanop

• channel.receiveCase()
– returns _chanop



       select {
       case a := <- ch[0]:
            go doSomething(a); 
       case b := <- ch[1]
            go doSomething(b);
       case c := <- ch[2]
            go doSomething(c);
       case ch[3]<- d: 
            go doSomethingElse();
       }

New Class: _chanop
_chanop(RECEIVE)

_chanop(SEND, value)



Example
def selector(a,b,c):
    while flag:
        ch, operation, value = stackless.select(\
[a.sendCase("A"), b.receiveCase(), c.sendCase("C")])

        if ch == a:
           print "sender A completed"
        elif ch == b:
           print "received ", value, "from receiver B"
        elif ch == c:
           print "sender C completed“
           flag = False
        else:
           print "should not get here"



Changes to Channels

Channel

TASKLET2
TASKLET1TASKLET0

Channel

CHANOP CHANOP CHANOP

BEFORE

AFTER



New Channel Methods

• channel.addOperation(chanop)
– need way to add operations to channels 

without blocking



Changes to Tasklets

Channel A Channel B

List of CHANOPS

__operation__



Short Cuts

• For now, separate send and receive 
queues are not implemented.

• channel.balance remains
– its so handy…

• Limitation
– A receive chanop and send chanop cannot be 

on the same channel queue



What Breaks?

• Only applications that depends on internal 
state
– A channel queue now consists of chanops not 

tasklets
– What does __channel__ now mean?
– channel.balance could disappear.



Moving to Stackless Python

Chapter Five



The Stackless Python C Version

• Programmer now responsible for
– Setting up house keeping structures 

(especially for C Extensions)
– Memory allocation
– Reference counting
– Manipulating complex data structures

• Stackless Python C code much more 
verbose
– ~1000 lines versus ~150



Example: Channel_action

PyAltObject *
slp_alt_action(PyAltObject *self)
{
 PyThreadState *ts = PyThreadState_GET();
 PyTaskletObject *t = ts->st.current;
 PyAltObject *target;

 assert(PyAlt_Check(self));
 assert(self->tasklet == t);

 target = slp_channel_remove(self->channel);
 if (target == NULL)
  return NULL;



Channel_action Continued

 assert(PyAlt_Check(target));
 assert(target->tasklet != t);

 Py_INCREF(target);

 alt_copy(self, target);
 alt_remove_all(target);

 target->tasklet->flags.blocked = 0;

 return target;
}



Summary of C Code

• Most of the changes are isolated  in:
–  channel’s generic_channel_action
– The alt object

• Stackless Python C code is just a C 
equivalent of the stackless.py code

• Esoteric issues concerning stack frames 
and locks are avoided 
– The GIL is our friend



Conclusions



Lessons Learnt
• Select relative easy to implement but 

requires substantial changes
• Clean room descriptions good
• Concentrate on proper API
• Initially copy to learn.
• Get working prototypes up and running 

quickly



Status

• Not quite prime time
– Slight signature differences between C and 

stackless.py
– C version fails a few unit tests

• Mostly pertaining to pickling
– Problems with complex select tests

• Both C and stackless.py 
–  Performance problem with stackless.py

• A bug with channel preferences?



However this was meant to be a prototype not 
production code!



Whither C Stackless Python?

• Psyco JIT/Stackless Python integration will 
make
– Stackless binaries a thing of the past
– Minimize the need for writing C-extensions

• PyPy-C 
– with JIT, faster than Cpython
– What will happen when stackless support is 

integrated with the JIT?



Future Directions

• Experiment with supporting select as a 
language feature

• Optimize select
– Can we avoid costly teardowns?

• Prototype other concurrency features
– Join patterns a la Polyphonic #C and Jocaml 
– Is this a gateway to Complex Event 

Processing?



Have Prototype Will Travel!
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For allowing me to do a dry run of this talk! 



Questions?



Thank You


