
Prototyping Go’s Select with
Stackless.py for Stackless Python

Andrew Francis
af.stackless@gmail.com

http://andrewfr.wordpress.com
July 19th, 2010

EuroPython 2010
Birmingham, UK

mailto:af.stackless@gmail.com
mailto:af.stackless@gmail.com

Purpose

• To show how PyPy’s stackless.py module
can be used to prototype new concurrency
features for Stackless Python

– Stackless Python is a superset of Python
renowned for microthreads too cheap to meter.

– Stackless Python also great for writing new
concurrency constructs!

Why Prototype with
stackless.py?

• Occasionally there are concurrency
constructs that are difficult to correctly
implement solely with Stackless Python’s
classes
– need finer control over scheduling
– Need to supplant underlying C data structures

• Prototyping with Stackless Python’s C code
base a costly way to experiment

Why Go’s Select : A Family
Tree

PYTHON
NEWSQUEAK
LIMBO

STACKLESS
PYTHON

GO

“Processes” (coroutines),
channels,
alt (select)

Goroutines
channels
select

Tasklets
channels
(but no select!)

By The Way

Select allows a coroutine to
wait on multiple channels for

an action to occur without
resorting to polling

(conceptually similar but not
the same as UNIX select)

Questions Explored through
Prototyping

• What is a suitable interface for a Stackless
Python select?

• What would internally change?
• How would pre-existing Stackless Python

applications break?

The Cast of Characters
PYTHON

STACKLESS PYTHON

PyPy-C

GREENLETS

USES

Interpreter
Concurrency

Interpreter

Interpreter

API

API

concurrency

concurrency

USES

USES

STACKLESS.Py

Implementation Details
Scheduler

getruncount ()

getcurrent()

Schedule()

OR

Runnable List

Deque (stackless.py)

Linked List (Stackless Python)

Current tasklet

The Approach

• Read Rob Pike’s paper “The
Implementation of Newsqueak”
– includes great description of the channel based

message passing algorithm
– An important theme is the opacity of the

underlying system’s state to the application
– First prototype was based solely on Pike’s

description

Approach Continued: Quick

chanelobject.c stackless.py
 Int

PyChannel_Send()
def send(self, msg)

static pyObject
*generic_channel_action() def channel_action

(self, arg, dir)

Mimics Stackless Python’s logical structure. Other variants of
stackless.py don’t

Approach Continued
Ask Questions

• Asked questions in Go Lang Nuts and
Stackless mailing lists
– GoLang Nuts: Rob Pike, Russ Cox, Ian

Taylor
• Read libthread.c

– Stackless: Christian Tismer and Richard
Tew

• Select cannot be done in Stackless without
additional tasklets

Prototyping

• Late April to June Sunday sessions
– partner Kevin Bulušek (Thanks!)

• Two prototypes done by end of April
– implementation of an eventHandler

• Got familiar with issues and stackless.py
– Stackless Python mock-up based on Plan 9’s

libthread (Kevin)
• An API for select
• data structures

An Overview of Stackless
Python and Go

Introduction
andrew@parker:~/lab/stacklessSelect/comparisons$ python
Python 2.6.5 Stackless 3.1b3 060516 (python-2.65:82030M, Jun 26
2010, 15:49:57)
[GCC 4.3.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import stackless
[32376 refs]
>>> dir(stackless)
['__doc__', '__name__', '__reduce__', '__reduce_ex__', '_gc_track',
'_gc_untrack', '_get_all_objects', '_get_refinfo', '_pickle_moduledict',

'_wrap', 'bomb', 'cframe', 'channel', 'cstack', 'enable_softswitch',
'get_thread_info', 'getcurrent', 'getmain', 'getruncount', 'run',
'schedule', 'schedule_remove', 'select', 'set_channel_callback',
'set_schedule_callback', 'slpmodule', 'stackless', 'tasklet',
'test_cframe', 'test_cframe_nr', 'test_cstate', 'test_outside']
', 'set_ignore_nesting', 'setup', 'tempval', 'thread_id']

Stackless Python Elements

• Tasklets
– User space light weight threads
– Executes actual work

• Scheduler
– Performances context switching between

tasklets
– Uses a round-robin scheduling
– Two modes: pre-emptive and cooperative

Channels

• Used for communications and
synchronization

• Bi-directional
• Can support iteration
• An object including channels and

exceptions can be passed
• Can be subclassed

Stackless Python’s World
Scheduler

Tasklets

Threads

Insert ()

Remove ()

Kill ()

getruncount()

schedule ()

run ()

send ()

receive ()

1

Channel

M

M
1

1

N

N

Green – available to programmer

N

Simple Stackless Programme
import stackless

def reader(channel):
 print "entering reader"
 print channel.receive()
 print "exiting reader"

def writer(channel):
 print "entering writer"
 channel.send("hello world")
 print "exiting writer"

if __name__ == "__main__":
 ch = stackless.channel()
 stackless.tasklet(reader)(ch)
 stackless.tasklet(writer)(ch)
 stackless.run()

Output

entering reader
entering writer
hello world
exiting reader
exiting writer

A Bad Channel Equivalent

import stackless

tempVal = None

class namedTasklet(stackless.tasklet):
 name = None

 def __repr__(self):
 return self.name

def reader():
 global tempVal
 print "entering reader"
 stackless.schedule()
 print tempVal
 print "exiting reader"

def printQueue():
 h = stackless.getcurrent()
 p = h
 while True:
 print "->", p
 p = p.next
 if p == h:
 break

def writer():
 global tempVal
 print "entering writer"
 tempVal = "hello world"
 t.remove()
 stackless.schedule()
 print "exiting writer"

def publisher(t):
 print "entering publisher"
 printQueue()
 t.insert()
 print
 printQueue()
 stackless.schedule()
 print "exiting publisher"

if __name__ == "__main__":
 t = namedTasklet(reader)()
 t.name = "reader"
 x = namedTasklet(writer)()
 x.name = "writer"
 x = namedTasklet(publisher)(t)
 x.name = "publisher"
 stackless.run()

Output
entering reader
entering writer
entering publisher
-> publisher
-> writer

-> publisher
-> writer
-> reader
exiting writer
hello world
exiting reader
exiting publisher

Why is Bad Important?

23

• Demonstrates that channels can be
constructed from lower level methods
available to the programmer
– schedule()
– schedule_remove()

• Application programmer has complete
control over the scheduler

• Almost all the building blocks are there to
build select using the Stackless API!

Channels: Rendezvous
Semantics

• For a successful communication to occur
there must be a sending tasklet and a
receiving tasklet
– active tasklet is the source
– inactive tasklet the target

• If there is not a target, the active tasklet will
block until another tasklet performs a
complimentary operation

How Channels Work

tasklet0 tasklet1
value =“” temp = “hello”

channel A channel A

tasklet0 tasklet1
temp = “hello”

channel A

tasklet0

tasklet1
temp = “hello”

channel A
tasklet0
value =“hello”

tasklet0
value = “hello”

channel A channel A

1

2

3

4

value =“hello”
Current tasklet

runnable

blocked

value = “”

value =“”

Channel Implementation Details:

>>> dir(stackless.channel)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__',
'__hash__', '__init__', '__iter__', '__module__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__',
'__slots__', '__str__', '__subclasshook__', 'balance', 'close', 'closed',
'closing', 'next', 'open', 'preference', 'queue', 'receive', 'schedule_all',
'send', 'send_exception', 'send_sequence]

-Channel.balance determines whether a tasklet will block
-A balance of zero causes the tasklet to block
- blocked tasklets are placed on a FIFO queue
-send() increments balance by 1
-receive() decrements balance by 1

A limitation of the rendezvous
semantics model

def eventHandler(channels):
 while True:
 for ch in channels:
 message = ch.receive()
 stackless.tasklet
(doSomething)(message)

Ch[0] ready after T + 10
Ch[1] ready after T + 15
Ch[2] ready after T + 1
Ch[3] ready after T + 2

Clearly this is a throughput problem….

Enter Go

• Very different from Python
– Statically typed
– Compiled
– limited OO features

• Similar concurrency constructs
– Implemented as language features
– Support for multiple CPUs

Simple Go Programme
func main() {
 var ch = make(chan int);
 fmt.Printf("I got here \n");
 go reader(ch);
 go writer(ch);
 fmt.Printf("Main Ending \n");
 <-ch;
}

package main

import fmt "fmt“

func reader(in chan int) {
 fmt.Printf("entering reader\n");
 x := <- in;
 fmt.Printf("->%d \n", x);
 fmt.Printf("exiting reader\n");
 in <- 1
}

func writer(out chan int) {
 fmt.Printf("entering writer\n");
 out <- 1;
 fmt.Printf("exiting writer\n");
}

Go Constructs
Go Stackless Python

variable <- channel variable = channel.receive()

Channel <- variable channel.send(variable)

data, ok = ch <- variable if channel.balance != 0

Go’s World
Scheduler goroutine

Threads

<- send

receive <-

1

Channels

M

N

N

Green – accessible to the programmer

Red – not accessible to the programmer

1

So?

• ‘Bad’ example could not be implemented in
Go
– goroutines are not objects
– Scheduler almost totally opaque to the

programmer
• Under the hood

– Support for multiple CPUs requires extensive
locking

– Is fine grained control over the scheduler in
such an environment desirable?

The Select Statement
 select {
 case a := <- ch[0]:
 go doSomething(a);
 case b := <- ch[1]
 go doSomething(b);
 case c := <- ch[2]
 go doSomething(c);
 case d := <- ch[3]:
 go doSomething(d);
 }

Could We Implement Select with
Only Stackless Python?

• Yes
– Use an additional tasklet per case

• And an extra join channel
– Hard to mimic behaviour

• Problem dealing with tasklets that unblock after the
select has finished

• The 20% that requires 80% of the effort?
– Bad performance?

Fragment of a Pseudo Solution
def select(cases):
 selector = stackless.channel()

 def case(ch,operation, value):
 if operation == RECEIVE:
 value = ch.receive()
 else:
 ch.send(value)

 selector.send(ch, operation, value)

 for ch, op, value in cases:
 if op == RECEIVE:
 stackless.tasklet(reader)(ch, value)
 else:
 stackless.tasklet(writer)(ch, value)

 # block until a case is ready
 retChannel, retOperation, retVal = selector.receive()

stackless.py

Section four

Description

• A Python based implementation of the
Stackless Python module
– scheduler, channels, tasklets
– Single file, roughly 650 lines

• Part of the PyPy Framework
– Currently PyPy implements Python 2.5
– Although Stackless is implemented, it is not

integrated with the JIT.

andrew@parker:~$ pypy-c
Python 2.5.2 (75825, Jul 05 2010, 02:48:27)
[PyPy 1.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
And now for something completely different: ``it's not a hack, it's a
workaround''
>>>> import stackless
>>>> dir(stackless)
['DEBUG', 'TaskletExit', '__all__', '__builtins__', '__doc__', '__file__',
'__name__', '__nrand_next', '_channel_callback', ,'_global_task_id', '_init',
'_last_task', '_main_coroutine', '_main_tasklet', '_run_calls',
'_schedule_callback', '_scheduler_append', '_scheduler_contains',
'_scheduler_remove', '_scheduler_switch', '_squeue',
'_stackless_primitive_registry', 'bomb', 'channel', 'coroutine', 'debug', 'deque',
'dprint', 'getcurrent', 'getmain', 'getruncount', 'greenlet', 'nrand',
'operator', 'register_stackless_primitive', 'rewrite_stackless_primitive', 'run',
'schedule', 'schedule_remove', 'set_channel_callback',
'set_schedule_callback', 'sys', 'tasklet', 'traceback']
>>>>

stackless.py’s Abstraction
Layer

STACKLESS.PY

STACKLESS
PYTHON GREENLETS

PYPY coroutines
Stackless transform

Example of Abstraction Layer
in code

try:
 from _stackless import coroutine, greenlet
except ImportError: # we are running from CPython
 from greenlet import greenlet
 try:
 from functools import partial
 except ImportError: # we are not running python 2.5

Usage

• Stackless.py resides in pypy/lib
• PyPy interpreter on top of Standard Python

– Too slow
– Defeats purpose of rapid prototyping

• pypy-c
– Like Stackless Python requires a separate

binary
– Avoid lengthy build by getting precompiled

version

A Trick of the Trade

• Use the Greenlets package with standard
Python
– Low level microthreading package
– Many Python packages use greenlets

• Eventlets
• gEvent

– stackless.py already included!
• This is the approach the PyPy team used

to develop stackless.py module

Limitations

• Does not support threads
• Does not support pre-emptive mode
• Does not implement all of the class

attributes

The Select Algorithm

Section Five

def select(self, operations):
 choice = None
 source = getcurrent()
 numberReady = 0

 for operation in operations:
 if operation.ready():
 numberReady += 1
 if nrand(numberReady) == 0:
 choice = operation

 if choice:
 choice.action()
 else:
 for operation in operations:
 operation.add()

 schedule_remove()
 schedule()

 choice = self._operation
 self._operation = None

 return choice.result()

 Select Under the Hood

 SELECT ,””

CH0 SENDQ0 CH1 SENDQn CH2 RECQ

SELECT, “WORLD” SELECT ,””

SELECT

SENDQ

RECQ
SELECT SENDER

<“HELLO”>
RECEIVER

<“”>

Runnable Queue

BLOCKING

Structure of a Channel

RECEIVER
<“”>

SELECT
<“HELLO”>

CH0 RECEIVERQ

CH2 RECEIVERQ

Tear Down

Select Under the Hood

SELECT,”” SELECT,””

• the source coroutine
•Transfers data to target (with select)
•Takes select coroutine off the participating channel
queues
•Places target on the runnable list

def _channel_action()
def _channel_action(self, operation):

 if _channel_callback is not None:
 _channel_callback(self, getcurrent(), operation)

 target = self.queue

 operation.copyOperation(target)
 target.tasklet._operation = target

 #clear operation from remaining channels
 target.removeall()

 target.tasklet.blocked = 0

Source channel responsible for moving data and tearing down
channels

Implementing select with
stackless.py

Section Five

New Stackless Methods

• stackless.select(list of chanops)
– returns (channel, operation, value)

• channel.sendCase()
– returns _chanop

• channel.receiveCase()
– returns _chanop

 select {
 case a := <- ch[0]:
 go doSomething(a);
 case b := <- ch[1]
 go doSomething(b);
 case c := <- ch[2]
 go doSomething(c);
 case ch[3]<- d:
 go doSomethingElse();
 }

New Class: _chanop
_chanop(RECEIVE)

_chanop(SEND, value)

Example
def selector(a,b,c):
 while flag:
 ch, operation, value = stackless.select(\
[a.sendCase("A"), b.receiveCase(), c.sendCase("C")])

 if ch == a:
 print "sender A completed"
 elif ch == b:
 print "received ", value, "from receiver B"
 elif ch == c:
 print "sender C completed“
 flag = False
 else:
 print "should not get here"

Changes to Channels

Channel

TASKLET2
TASKLET1TASKLET0

Channel

CHANOP CHANOP CHANOP

BEFORE

AFTER

New Channel Methods

• channel.addOperation(chanop)
– need way to add operations to channels

without blocking

Changes to Tasklets

Channel A Channel B

List of CHANOPS

__operation__

Short Cuts

• For now, separate send and receive
queues are not implemented.

• channel.balance remains
– its so handy…

• Limitation
– A receive chanop and send chanop cannot be

on the same channel queue

What Breaks?

• Only applications that depends on internal
state
– A channel queue now consists of chanops not

tasklets
– What does __channel__ now mean?
– channel.balance could disappear.

Moving to Stackless Python

Chapter Five

The Stackless Python C Version

• Programmer now responsible for
– Setting up house keeping structures

(especially for C Extensions)
– Memory allocation
– Reference counting
– Manipulating complex data structures

• Stackless Python C code much more
verbose
– ~1000 lines versus ~150

Example: Channel_action

PyAltObject *
slp_alt_action(PyAltObject *self)
{
 PyThreadState *ts = PyThreadState_GET();
 PyTaskletObject *t = ts->st.current;
 PyAltObject *target;

 assert(PyAlt_Check(self));
 assert(self->tasklet == t);

 target = slp_channel_remove(self->channel);
 if (target == NULL)
 return NULL;

Channel_action Continued

 assert(PyAlt_Check(target));
 assert(target->tasklet != t);

 Py_INCREF(target);

 alt_copy(self, target);
 alt_remove_all(target);

 target->tasklet->flags.blocked = 0;

 return target;
}

Summary of C Code

• Most of the changes are isolated in:
– channel’s generic_channel_action
– The alt object

• Stackless Python C code is just a C
equivalent of the stackless.py code

• Esoteric issues concerning stack frames
and locks are avoided
– The GIL is our friend

Conclusions

Lessons Learnt
• Select relative easy to implement but

requires substantial changes
• Clean room descriptions good
• Concentrate on proper API
• Initially copy to learn.
• Get working prototypes up and running

quickly

Status

• Not quite prime time
– Slight signature differences between C and

stackless.py
– C version fails a few unit tests

• Mostly pertaining to pickling
– Problems with complex select tests

• Both C and stackless.py
– Performance problem with stackless.py

• A bug with channel preferences?

However this was meant to be a prototype not
production code!

Whither C Stackless Python?

• Psyco JIT/Stackless Python integration will
make
– Stackless binaries a thing of the past
– Minimize the need for writing C-extensions

• PyPy-C
– with JIT, faster than Cpython
– What will happen when stackless support is

integrated with the JIT?

Future Directions

• Experiment with supporting select as a
language feature

• Optimize select
– Can we avoid costly teardowns?

• Prototype other concurrency features
– Join patterns a la Polyphonic #C and Jocaml
– Is this a gateway to Complex Event

Processing?

Have Prototype Will Travel!

References

• “The Implementation of Newsqueak” by
Rob Pike

• http://www.stackless.com
• http://codespeak.net/pypy/dist/pypy/doc/

stackless.html
• The GoLang-Nuts mailing list
• http://swtch.com/usr/local/plan9/src/

libthread/channel.c
• “Stuff What I Posted”, Richard Tew’s Blog

http://www.stackless.com/
http://www.stackless.com/
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c
http://swtch.com/usr/local/plan9/src/libthread/channel.c

Acknowledgements

• Special thanks to
– Kevin Bulušek !!!!
– Annette Hollman (for helping me with the

slides)
– The McGill Continuing Education Student

Building staff (MACES)
– And ….

For allowing me to do a dry run of this talk!

Questions?

Thank You

