
Prototyping Go’s Select
in Stackless Python with Stackless.py

1st draught
Andrew Francis

Montreal Python #13
April 26th, 2010

af.stackless@gmail.com

May 3rd, Notes

• Based on early feedback, I am going to change
the structure of this talk somewhat.

• The title will change to:
– Prototyping Go’s Select

for Stackless Python with Stackless.py

Purpose

• Illustrate how PyPy’s stackless.py module can
be used to prototype new Stackless Python
features.

• The example is the Select statement in the Go
Language.

What You Should Take Away?

• A basic knowledge of Stackless Python
concepts and exposure to its API.

• The power of Python to quickly prototype
concepts.
– Sometimes a prototype illustrates the infeasibility

of a concept.

– “fearless programming” i., typeless,
referenceless, clutterless ….

Motivation

• Masha Rabinovich: Go's microthreads and
channels are only partially exposed to the
programmer, and in a very limited way. In
order to make them usable you need select. In
Stackless, you do not need select and in fact,
there has been no demand for anything like it.

Taken from Richard Tew’s “Stuff What I Posted

http://posted-stuff.blogspot.com/2009/11/comparing-go-and-stackless-
python.html

Why Go?

Brief Overview

Section Two

Basics

• Tasklets
– Light weight threads that execute in user space.

– Low over head

– Fast context switching

• Channels
– Used for concurrency and communications.

– Rendezvous semantics

Stackless Example
import stackless

def reader(channel):
print "entering reader "
print channel.receive()
print "exiting reader"

def writer(channel):
print "entering writer"
channel.send(100)
print "exiting writer"

if __name__ == "__main__":
ch = stackless.channel()
stackless.tasklet(reader)(ch)
stackless.tasklet(writer)(ch)
stackless.run()

Go Example
package main

import fmt "fmt"

func reader(in chan int) {
fmt.Printf("entering reader\n");
x := <- in;
fmt.Printf("->%d \n", x);
fmt.Printf("exiting reader\n");
in <- 1

}

func writer(out chan int) {
fmt.Printf("entering writer\n");
out <- 1;
fmt.Printf("exiting writer\n");

}

func main() {
var ch = make(chan int);
go reader(ch);
go writer(ch);
<-ch;

}

How Channels Work

What Problem Does Select Solve?

while True:

for ch in channels:

message = ch.receive()

stackless.tasklet(doSomething)(message)

Let us pretend ….

Ch[0] ready after T + 10

Ch[1] ready after T + 15

Ch[2] ready after T + 1

Ch[3] ready after T + 2

Go Select Example

for {
select {
case a := <- ch1:

go doSomething(a);
case b := <- ch2

go doSomething(b);
case c := <- ch3

go doSomething(c);
case d := <- ch4:

go doSomething(d);
}

}

Another Go Concept – Checking to
block

v, okay = <- ch

Okay := ch <- v

(taken from GoCourseDay 3)
Allows programmer to check if operation will

block

Stackless has channel.balance

Philosophical Differences

• In Go, concurrency is a language feature.
Stackless offers concurrency via classes.

• Go exposes much less of the underlying
concurrency machinery to the programmer
than Stackless.

• Different audiences?

Food For Thought

• In the WS-BPEL specification, the Pick activity
waits on multiple events.
– When an event is ready, the process resumes.

– The remaining events are ignored.

• If the implementation uses tasklets, ignoring is
easy
– tasklet.kill(), tasklet.remove()

• How does Go do it?

A Stackless Python Work Around

• Select can be emulated in Stackless Python
– Solution requires additional tasklets to block on

selected channels

– Andrew Dalke posted a solution see
http://www.stackless.com/pipermail/stackless/20
09-November/004392.html

– Works but more complicated than having support
in the scheduler

http://www.stackless.com/pipermail/stackless/2009-November/004392.html�
http://www.stackless.com/pipermail/stackless/2009-November/004392.html�

My Proposal

def eventManager(list):
ev = stackless.eventHandler(self.list)
while True:

ch, operation, value = ev.wait()
if ch == self.channels[0] and \

operation == SEND:
doNetworkEvent(value)

elif ch == self.channels[1] and \
operation == SEND

doWindowSystemEvent(value)
....

return

Stackless.py

Section Three

Stackless.py Basics

• Implementation of the Stackless Python
module included with PyPy.

• Stackless.py is written in Python!

• Runs on top of the coroutine and greenlet
packages

• Can be used with PyPy interpreter (real slow)

• Compiled into pypy-c

Stackless.py Continued

• Unfortunately, stackless.py is buggy and hasn’t
been kept up to date.
– Not a high priority for the PyPy Team.

– We don’t need stackless.py to be perfect

• A great way to understand Stackless Python
concepts without the clutter of C!

A Trick

• Stackless.py along with the greenlet package
can be used with Standard Python!

• This is how the PyPy team developed
stackless.py!

Questions

• How closely does Stackless.py approximate C
Stackless Python?

• Is it possible to implement Select without
changing the C Stackless Python
implementation?

• If not, what are the minimum number of
changes needed to support Select as a Python
module?

Stackless Python and Psyco

• The creator of Stackless Python, Christian
Tismer also works on Psyco, a JIT extension.

• Psyco and Stackless are being integrated
– Version already available

• Stackless Python will eventually become an
Python extension module!

• All the more reason to write in Python!

Prototyping Select with
Stackless.py

Section Four

Strategy

• Follow the algorithms in Rob Pike’s “The
Implementation of Newsqueak.”

• Reviewed Stackless C code.

• Reviewed Go chan.c and proc.c

• Ask questions in Golang nuts Google group
and Stackless mailing lists.

The Select Algorithm

• Search list for a ready channel operation
– In case of tie, randomly choose

• Put the coroutine on the all the channel
queues.

• Suspend

• When rendezvous occurs
– Remove reference from remaining channels

– Schedule selected coroutine

Select Illustrated

Fundamental Problems

• Need way to add a tasklet to a channel queue
without blocking.

• When a tasklet implementing a selector wakes
up, how does the selector determine the
channel and the operation?

• How to do selector data transfers?
– The case of when the selector is blocked on a

send().

Need Changes to C Implementation

• The aforementioned additions require
changes to C Stackless Python.

More Info – The Scheduler API

• Need to use three new stackless methods
– schedule_remove()

• removes a tasklet from the scheduler queue.

– schedule()
• Allows the next runnable tasklet to execute

– getcurrent()
• Get the currently executing tasklet

Main Changes

• Created a new class – eventHandler that acts
as the selector
– __init__((channel, operation, value))

• Create the selector set

– wait()
• Wait for an event to occur

– update(self, source, target, operation, data)
• Allows a channel to update the selector

• Isolate changes to channel implementation

Main Changes Continued

• Added channel.addOperation(self, tasklet,
operation, value)
– Allows data to be added to the channel without

an action taken (i.e., send/receive)

Event Wait
def wait(self):

source = getcurrent()
source._selector = self

event = self._selectReadyAtRandom()
if event == None:

for event in self.newEventQueue:
self.blockedChannels.append(event)

else:
event.getValue()
return event.channel, event.operation, event.value

self.blocked = True
for event in self.blockedChannels:

event.addToChannel(source)

schedule_remove()
schedule()

readyEvent = self.readyEventQueue.pop(0)

self.reset()

return readyEvent.channel, readyEvent.operation, readyEvent.value

EventHandler update()

def update(self, channel, operation, source, target, args):
e = event(channel, -operation, source.tempval, True)
self.readyEventQueue.append(e)
for theEvent in self.blockedChannels:

try:
"""
remove the tasklet and restore the balance
"""
theEvent.channel.queue.remove((target, theEvent.value))
theEvent.channel.balance -= theEvent.operation

except ValueError:
pass

return

Stackless.py channel_action

if cando:
detected = False
debug("CANDO")
communication 1): there is somebody waiting
target, data = self.queue.popleft()
if hasattr(target, "_selector"):

debug("UPDATING")
target._selector.update(self, d, source, target, arg)
detected = True

source.tempval, target.tempval = data, source.tempval

target.blocked = 0

C Stackless Python

static PyObject *
generic_channel_action(PyChannelObject *self, PyObject *arg, int dir, int
stackless)
{

PyThreadState *ts = PyThreadState_GET();
PyTaskletObject *source = ts->st.current;
PyTaskletObject *target = self->head;
int cando = dir > 0 ? self->balance < 0 : self->balance > 0;
int interthread = cando ? target->cstate->tstate != ts : 0;
PyObject *retval;

assert(abs(dir) == 1);

TASKLET_SETVAL(source, arg);

/* note that notify might release the GIL. */
/* XXX for the moment, we notify late on interthread */
if (!interthread)

NOTIFY_CHANNEL(self, source, dir, cando, NULL);

if (cando) {
/* communication 1): there is somebody waiting */
target = slp_channel_remove(self, -dir);
/* exchange data */
TASKLET_SWAPVAL(source, target);

Observations

• Once I got the gist of the algorithms and
stackless.py, things when quickly.

• A clear description helps!
– Can also test against Go!

• Wasted the most time on premature
optimizations while I was still learning!

• Unit tests helped immensely.

• And a second pair of eyes!

Conclusions

• Happy with the process

• Changes to C Stackless would be necessary.

• Now have a framework to do what-ifs and
measure results.
– Tearing down channels is mighty expensive ….

• Get input from other developers.

• If feasible, lets put the changes in C Python or
compile into pypy-c!

Thank You!

	Prototyping Go’s Select �in Stackless Python with Stackless.py�
	May 3rd, Notes
	Purpose
	Slide Number 4
	What You Should Take Away?
	Motivation
	Why Go?
	Brief Overview
	Basics
	Stackless Example
	Go Example
	How Channels Work
	What Problem Does Select Solve?
	Go Select Example
	Another Go Concept – Checking to block
	Philosophical Differences
	Food For Thought
	A Stackless Python Work Around
	My Proposal
	Stackless.py
	Stackless.py Basics
	Stackless.py Continued
	A Trick
	Questions
	Stackless Python and Psyco
	Prototyping Select with Stackless.py
	Strategy
	The Select Algorithm
	Select Illustrated
	Fundamental Problems
	Need Changes to C Implementation
	More Info – The Scheduler API
	Main Changes
	Main Changes Continued
	Event Wait
	EventHandler update()
	Stackless.py channel_action
	C Stackless Python
	Observations
	Conclusions
	Thank You!

